unitorch.cli.models.bloom¤
BloomProcessor¤
Tip
core/process/bloom
is the section for configuration of BloomProcessor.
Bases: BloomProcessor
Processor for Bloom language models.
Initialize the BloomProcessor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer_file |
str
|
The path to the tokenizer file. |
required |
max_seq_length |
int
|
The maximum sequence length. Defaults to 128. |
128
|
max_gen_seq_length |
int
|
The maximum generation sequence length. Defaults to 128. |
128
|
Source code in src/unitorch/cli/models/bloom/processing.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
from_core_configure
classmethod
¤
from_core_configure(config, **kwargs)
Create an instance of BloomProcessor from the core configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
Config
|
The core configuration object. |
required |
Returns:
Name | Type | Description |
---|---|---|
BloomProcessor |
An instance of BloomProcessor initialized with the provided configuration. |
Source code in src/unitorch/cli/models/bloom/processing.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
BloomForClassification¤
Tip
core/model/classification/bloom
is the section for configuration of BloomForClassification.
Bases: BloomForClassification
Bloom model for classification.
Initialize the BloomForClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
The path to the model configuration file. |
required |
num_classes |
int
|
The number of classes for classification. Defaults to 1. |
1
|
gradient_checkpointing |
bool
|
Whether to use gradient checkpointing during training. Defaults to False. |
False
|
Source code in src/unitorch/cli/models/bloom/modeling.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|
forward ¤
forward(
input_ids: Tensor,
attention_mask: Optional[Tensor] = None,
)
Perform forward pass of the BloomForClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
The input token IDs. |
required |
attention_mask |
Tensor
|
The attention mask. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
ClassificationOutputs |
The classification outputs. |
Source code in src/unitorch/cli/models/bloom/modeling.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
from_core_configure
classmethod
¤
from_core_configure(config, **kwargs)
Create an instance of BloomForClassification from the core configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
Config
|
The core configuration object. |
required |
Returns:
Name | Type | Description |
---|---|---|
BloomForClassification |
An instance of BloomForClassification initialized with the provided configuration. |
Source code in src/unitorch/cli/models/bloom/modeling.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
BloomForGeneration¤
Tip
core/model/generation/bloom
is the section for configuration of BloomForGeneration.
Bases: BloomForGeneration
Bloom model for text generation.
Initialize the BloomForGeneration model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
The path to the model configuration file. |
required |
gradient_checkpointing |
bool
|
Whether to use gradient checkpointing during training. Defaults to False. |
False
|
Source code in src/unitorch/cli/models/bloom/modeling.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
forward ¤
forward(
input_ids: Tensor,
attention_mask: Optional[Tensor] = None,
)
Perform forward pass of the BloomForGeneration model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
The input token IDs. |
required |
attention_mask |
Tensor
|
The attention mask. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenerationOutputs |
The generation outputs. |
Source code in src/unitorch/cli/models/bloom/modeling.py
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
from_core_configure
classmethod
¤
from_core_configure(config, **kwargs)
Create an instance of BloomForGeneration from the core configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
Config
|
The core configuration object. |
required |
Returns:
Name | Type | Description |
---|---|---|
BloomForGeneration |
An instance of BloomForGeneration initialized with the provided configuration. |
Source code in src/unitorch/cli/models/bloom/modeling.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
generate ¤
generate(
input_ids: Tensor,
num_beams: Optional[int] = 5,
decoder_start_token_id: Optional[int] = 1,
decoder_end_token_id: Optional[
Union[int, List[int]]
] = 2,
num_return_sequences: Optional[int] = 1,
min_gen_seq_length: Optional[int] = 0,
max_gen_seq_length: Optional[int] = 48,
repetition_penalty: Optional[float] = 1.0,
no_repeat_ngram_size: Optional[int] = 0,
early_stopping: Optional[bool] = True,
length_penalty: Optional[float] = 1.0,
num_beam_groups: Optional[int] = 1,
diversity_penalty: Optional[float] = 0.0,
do_sample: Optional[bool] = False,
temperature: Optional[float] = 1.0,
top_k: Optional[int] = 50,
top_p: Optional[float] = 1.0,
)
Generate sequences using the Bloom model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
Input token IDs. |
required |
num_beams |
int
|
Number of beams for beam search. Defaults to 5. |
5
|
decoder_start_token_id |
int
|
Decoder start token ID. Defaults to 0. |
1
|
decoder_end_token_id |
int or List[int]
|
The ID(s) of the decoder end token(s). Defaults to 1. |
2
|
num_return_sequences |
int
|
Number of generated sequences to return. Defaults to 1. |
1
|
min_gen_seq_length |
int
|
Minimum generation sequence length. Defaults to 0. |
0
|
max_gen_seq_length |
int
|
Maximum generation sequence length. Defaults to 48. |
48
|
repetition_penalty |
float
|
Repetition penalty. Defaults to 1.0. |
1.0
|
no_repeat_ngram_size |
int
|
Size of n-grams to prevent repetition. Defaults to 0. |
0
|
early_stopping |
bool
|
Whether to perform early stopping. Defaults to True. |
True
|
length_penalty |
float
|
Length penalty. Defaults to 1.0. |
1.0
|
num_beam_groups |
int
|
Number of beam groups for diverse beam search. Defaults to 1. |
1
|
diversity_penalty |
float
|
Diversity penalty for diverse beam search. Defaults to 0.0. |
0.0
|
do_sample |
bool
|
Whether to use sampling for generation. Defaults to False. |
False
|
temperature |
float
|
Sampling temperature. Defaults to 1.0. |
1.0
|
top_k |
int
|
Top-k sampling parameter. Defaults to 50. |
50
|
top_p |
float
|
Top-p sampling parameter. Defaults to 1.0. |
1.0
|
Returns:
Name | Type | Description |
---|---|---|
GenerationOutputs |
The generation outputs. |
Source code in src/unitorch/cli/models/bloom/modeling.py
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
|