Skip to content

unitorch.cli.models.bloom¤

BloomProcessor¤

Tip

core/process/bloom is the section for configuration of BloomProcessor.

Bases: BloomProcessor

Processor for Bloom language models.

Initialize the BloomProcessor.

Parameters:

Name Type Description Default
tokenizer_file str

The path to the tokenizer file.

required
max_seq_length int

The maximum sequence length. Defaults to 128.

128
max_gen_seq_length int

The maximum generation sequence length. Defaults to 128.

128
Source code in src/unitorch/cli/models/bloom/processing.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def __init__(
    self,
    tokenizer_file: str,
    max_seq_length: Optional[int] = 128,
    max_gen_seq_length: Optional[int] = 128,
):
    """
    Initialize the BloomProcessor.

    Args:
        tokenizer_file (str): The path to the tokenizer file.
        max_seq_length (int, optional): The maximum sequence length. Defaults to 128.
        max_gen_seq_length (int, optional): The maximum generation sequence length. Defaults to 128.
    """
    super().__init__(
        tokenizer_file=tokenizer_file,
        max_seq_length=max_seq_length,
        max_gen_seq_length=max_gen_seq_length,
    )

from_core_configure classmethod ¤

from_core_configure(config, **kwargs)

Create an instance of BloomProcessor from the core configuration.

Parameters:

Name Type Description Default
config Config

The core configuration object.

required

Returns:

Name Type Description
BloomProcessor

An instance of BloomProcessor initialized with the provided configuration.

Source code in src/unitorch/cli/models/bloom/processing.py
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
@classmethod
@add_default_section_for_init("core/process/bloom")
def from_core_configure(cls, config, **kwargs):
    """
    Create an instance of BloomProcessor from the core configuration.

    Args:
        config (Config): The core configuration object.

    Returns:
        BloomProcessor: An instance of BloomProcessor initialized with the provided configuration.
    """
    config.set_default_section("core/process/bloom")
    pretrained_name = config.getoption("pretrained_name", "bloom-560m")
    tokenizer_file = config.getoption("tokenizer_file", None)
    tokenizer_file = pop_value(
        tokenizer_file,
        nested_dict_value(pretrained_bloom_infos, pretrained_name, "tokenizer"),
    )
    tokenizer_file = cached_path(tokenizer_file)

    return {
        "tokenizer_file": tokenizer_file,
    }

BloomForClassification¤

Tip

core/model/classification/bloom is the section for configuration of BloomForClassification.

Bases: BloomForClassification

Bloom model for classification.

Initialize the BloomForClassification model.

Parameters:

Name Type Description Default
config_path str

The path to the model configuration file.

required
num_classes int

The number of classes for classification. Defaults to 1.

1
gradient_checkpointing bool

Whether to use gradient checkpointing during training. Defaults to False.

False
Source code in src/unitorch/cli/models/bloom/modeling.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def __init__(
    self,
    config_path: str,
    num_classes: Optional[int] = 1,
    gradient_checkpointing: Optional[bool] = False,
):
    """
    Initialize the BloomForClassification model.

    Args:
        config_path (str): The path to the model configuration file.
        num_classes (int, optional): The number of classes for classification. Defaults to 1.
        gradient_checkpointing (bool, optional): Whether to use gradient checkpointing during training. Defaults to False.
    """
    super().__init__(
        config_path=config_path,
        num_classes=num_classes,
        gradient_checkpointing=gradient_checkpointing,
    )

forward ¤

forward(
    input_ids: Tensor,
    attention_mask: Optional[Tensor] = None,
)

Perform forward pass of the BloomForClassification model.

Parameters:

Name Type Description Default
input_ids Tensor

The input token IDs.

required
attention_mask Tensor

The attention mask. Defaults to None.

None

Returns:

Name Type Description
ClassificationOutputs

The classification outputs.

Source code in src/unitorch/cli/models/bloom/modeling.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
@autocast(device_type=("cuda" if torch.cuda.is_available() else "cpu"))
def forward(
    self,
    input_ids: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
):
    """
    Perform forward pass of the BloomForClassification model.

    Args:
        input_ids (torch.Tensor): The input token IDs.
        attention_mask (torch.Tensor, optional): The attention mask. Defaults to None.

    Returns:
        ClassificationOutputs: The classification outputs.
    """
    outputs = super().forward(
        input_ids=input_ids,
        attention_mask=attention_mask,
    )
    return ClassificationOutputs(outputs=outputs)

from_core_configure classmethod ¤

from_core_configure(config, **kwargs)

Create an instance of BloomForClassification from the core configuration.

Parameters:

Name Type Description Default
config Config

The core configuration object.

required

Returns:

Name Type Description
BloomForClassification

An instance of BloomForClassification initialized with the provided configuration.

Source code in src/unitorch/cli/models/bloom/modeling.py
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
@classmethod
@add_default_section_for_init("core/model/classification/bloom")
def from_core_configure(cls, config, **kwargs):
    """
    Create an instance of BloomForClassification from the core configuration.

    Args:
        config (Config): The core configuration object.

    Returns:
        BloomForClassification: An instance of BloomForClassification initialized with the provided configuration.
    """
    config.set_default_section("core/model/classification/bloom")
    pretrained_name = config.getoption("pretrained_name", "bloom-560m")
    pretrained_lora_name = config.getoption(
        "pretrained_lora_name", "bloom-560m-lora"
    )
    config_path = config.getoption("config_path", None)
    num_classes = config.getoption("num_classes", 1)

    config_path = pop_value(
        config_path,
        nested_dict_value(pretrained_bloom_infos, pretrained_name, "config"),
    )

    config_path = cached_path(config_path)
    gradient_checkpointing = config.getoption("gradient_checkpointing", False)

    inst = cls(config_path, num_classes, gradient_checkpointing)
    pretrained_weight_path = config.getoption("pretrained_weight_path", None)
    weight_path = pop_value(
        pretrained_weight_path,
        nested_dict_value(pretrained_bloom_infos, pretrained_name, "weight"),
        check_none=False,
    )

    if weight_path is not None:
        inst.from_pretrained(weight_path)

    pretrained_lora_weight_path = config.getoption(
        "pretrained_lora_weight_path", None
    )
    lora_weight_path = pop_value(
        pretrained_lora_weight_path,
        nested_dict_value(pretrained_bloom_extensions_infos, pretrained_lora_name),
        check_none=False,
    )
    pretrained_lora_weight = config.getoption("pretrained_lora_weight", 1.0)
    pretrained_lora_alpha = config.getoption("pretrained_lora_alpha", 32.0)
    if lora_weight_path is not None:
        inst.load_lora_weights(
            lora_weight_path,
            lora_weights=pretrained_lora_weight,
            lora_alphas=pretrained_lora_alpha,
        )

    return inst

BloomForGeneration¤

Tip

core/model/generation/bloom is the section for configuration of BloomForGeneration.

Bases: BloomForGeneration

Bloom model for text generation.

Initialize the BloomForGeneration model.

Parameters:

Name Type Description Default
config_path str

The path to the model configuration file.

required
gradient_checkpointing bool

Whether to use gradient checkpointing during training. Defaults to False.

False
Source code in src/unitorch/cli/models/bloom/modeling.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def __init__(
    self,
    config_path: str,
    gradient_checkpointing: Optional[bool] = False,
):
    """
    Initialize the BloomForGeneration model.

    Args:
        config_path (str): The path to the model configuration file.
        gradient_checkpointing (bool, optional): Whether to use gradient checkpointing during training. Defaults to False.
    """
    super().__init__(
        config_path=config_path,
        gradient_checkpointing=gradient_checkpointing,
    )

forward ¤

forward(
    input_ids: Tensor,
    attention_mask: Optional[Tensor] = None,
)

Perform forward pass of the BloomForGeneration model.

Parameters:

Name Type Description Default
input_ids Tensor

The input token IDs.

required
attention_mask Tensor

The attention mask. Defaults to None.

None

Returns:

Name Type Description
GenerationOutputs

The generation outputs.

Source code in src/unitorch/cli/models/bloom/modeling.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
@autocast(device_type=("cuda" if torch.cuda.is_available() else "cpu"))
def forward(
    self,
    input_ids: torch.Tensor,
    attention_mask: Optional[torch.Tensor] = None,
):
    """
    Perform forward pass of the BloomForGeneration model.

    Args:
        input_ids (torch.Tensor): The input token IDs.
        attention_mask (torch.Tensor, optional): The attention mask. Defaults to None.

    Returns:
        GenerationOutputs: The generation outputs.
    """
    outputs = super().forward(
        input_ids=input_ids,
        attention_mask=attention_mask,
    )
    return GenerationOutputs(sequences=outputs)

from_core_configure classmethod ¤

from_core_configure(config, **kwargs)

Create an instance of BloomForGeneration from the core configuration.

Parameters:

Name Type Description Default
config Config

The core configuration object.

required

Returns:

Name Type Description
BloomForGeneration

An instance of BloomForGeneration initialized with the provided configuration.

Source code in src/unitorch/cli/models/bloom/modeling.py
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
@classmethod
@add_default_section_for_init("core/model/generation/bloom")
def from_core_configure(cls, config, **kwargs):
    """
    Create an instance of BloomForGeneration from the core configuration.

    Args:
        config (Config): The core configuration object.

    Returns:
        BloomForGeneration: An instance of BloomForGeneration initialized with the provided configuration.
    """
    config.set_default_section("core/model/generation/bloom")
    pretrained_name = config.getoption("pretrained_name", "bloom-560m")
    pretrained_lora_name = config.getoption(
        "pretrained_lora_name", "bloom-560m-lora"
    )
    config_path = config.getoption("config_path", None)
    config_path = pop_value(
        config_path,
        nested_dict_value(pretrained_bloom_infos, pretrained_name, "config"),
    )

    config_path = cached_path(config_path)
    gradient_checkpointing = config.getoption("gradient_checkpointing", False)

    inst = cls(config_path, gradient_checkpointing)
    pretrained_weight_path = config.getoption("pretrained_weight_path", None)
    weight_path = pop_value(
        pretrained_weight_path,
        nested_dict_value(pretrained_bloom_infos, pretrained_name, "weight"),
        check_none=False,
    )

    if weight_path is not None:
        inst.from_pretrained(weight_path)

    pretrained_lora_weight_path = config.getoption(
        "pretrained_lora_weight_path", None
    )
    lora_weight_path = pop_value(
        pretrained_lora_weight_path,
        nested_dict_value(pretrained_bloom_extensions_infos, pretrained_lora_name),
        check_none=False,
    )
    pretrained_lora_weight = config.getoption("pretrained_lora_weight", 1.0)
    pretrained_lora_alpha = config.getoption("pretrained_lora_alpha", 32.0)
    if lora_weight_path is not None:
        inst.load_lora_weights(
            lora_weight_path,
            lora_weights=pretrained_lora_weight,
            lora_alphas=pretrained_lora_alpha,
        )

    return inst

generate ¤

generate(
    input_ids: Tensor,
    num_beams: Optional[int] = 5,
    decoder_start_token_id: Optional[int] = 1,
    decoder_end_token_id: Optional[
        Union[int, List[int]]
    ] = 2,
    num_return_sequences: Optional[int] = 1,
    min_gen_seq_length: Optional[int] = 0,
    max_gen_seq_length: Optional[int] = 48,
    repetition_penalty: Optional[float] = 1.0,
    no_repeat_ngram_size: Optional[int] = 0,
    early_stopping: Optional[bool] = True,
    length_penalty: Optional[float] = 1.0,
    num_beam_groups: Optional[int] = 1,
    diversity_penalty: Optional[float] = 0.0,
    do_sample: Optional[bool] = False,
    temperature: Optional[float] = 1.0,
    top_k: Optional[int] = 50,
    top_p: Optional[float] = 1.0,
)

Generate sequences using the Bloom model.

Parameters:

Name Type Description Default
input_ids Tensor

Input token IDs.

required
num_beams int

Number of beams for beam search. Defaults to 5.

5
decoder_start_token_id int

Decoder start token ID. Defaults to 0.

1
decoder_end_token_id int or List[int]

The ID(s) of the decoder end token(s). Defaults to 1.

2
num_return_sequences int

Number of generated sequences to return. Defaults to 1.

1
min_gen_seq_length int

Minimum generation sequence length. Defaults to 0.

0
max_gen_seq_length int

Maximum generation sequence length. Defaults to 48.

48
repetition_penalty float

Repetition penalty. Defaults to 1.0.

1.0
no_repeat_ngram_size int

Size of n-grams to prevent repetition. Defaults to 0.

0
early_stopping bool

Whether to perform early stopping. Defaults to True.

True
length_penalty float

Length penalty. Defaults to 1.0.

1.0
num_beam_groups int

Number of beam groups for diverse beam search. Defaults to 1.

1
diversity_penalty float

Diversity penalty for diverse beam search. Defaults to 0.0.

0.0
do_sample bool

Whether to use sampling for generation. Defaults to False.

False
temperature float

Sampling temperature. Defaults to 1.0.

1.0
top_k int

Top-k sampling parameter. Defaults to 50.

50
top_p float

Top-p sampling parameter. Defaults to 1.0.

1.0

Returns:

Name Type Description
GenerationOutputs

The generation outputs.

Source code in src/unitorch/cli/models/bloom/modeling.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
@add_default_section_for_function("core/model/generation/bloom")
@torch.no_grad()
@autocast(device_type=("cuda" if torch.cuda.is_available() else "cpu"))
def generate(
    self,
    input_ids: torch.Tensor,
    num_beams: Optional[int] = 5,
    decoder_start_token_id: Optional[int] = 1,
    decoder_end_token_id: Optional[Union[int, List[int]]] = 2,
    num_return_sequences: Optional[int] = 1,
    min_gen_seq_length: Optional[int] = 0,
    max_gen_seq_length: Optional[int] = 48,
    repetition_penalty: Optional[float] = 1.0,
    no_repeat_ngram_size: Optional[int] = 0,
    early_stopping: Optional[bool] = True,
    length_penalty: Optional[float] = 1.0,
    num_beam_groups: Optional[int] = 1,
    diversity_penalty: Optional[float] = 0.0,
    do_sample: Optional[bool] = False,
    temperature: Optional[float] = 1.0,
    top_k: Optional[int] = 50,
    top_p: Optional[float] = 1.0,
):
    """
    Generate sequences using the Bloom model.

    Args:
        input_ids (torch.Tensor): Input token IDs.
        num_beams (int, optional): Number of beams for beam search. Defaults to 5.
        decoder_start_token_id (int, optional): Decoder start token ID. Defaults to 0.
        decoder_end_token_id (int or List[int], optional): The ID(s) of the decoder end token(s). Defaults to 1.
        num_return_sequences (int, optional): Number of generated sequences to return. Defaults to 1.
        min_gen_seq_length (int, optional): Minimum generation sequence length. Defaults to 0.
        max_gen_seq_length (int, optional): Maximum generation sequence length. Defaults to 48.
        repetition_penalty (float, optional): Repetition penalty. Defaults to 1.0.
        no_repeat_ngram_size (int, optional): Size of n-grams to prevent repetition. Defaults to 0.
        early_stopping (bool, optional): Whether to perform early stopping. Defaults to True.
        length_penalty (float, optional): Length penalty. Defaults to 1.0.
        num_beam_groups (int, optional): Number of beam groups for diverse beam search. Defaults to 1.
        diversity_penalty (float, optional): Diversity penalty for diverse beam search. Defaults to 0.0.
        do_sample (bool, optional): Whether to use sampling for generation. Defaults to False.
        temperature (float, optional): Sampling temperature. Defaults to 1.0.
        top_k (int, optional): Top-k sampling parameter. Defaults to 50.
        top_p (float, optional): Top-p sampling parameter. Defaults to 1.0.

    Returns:
        GenerationOutputs: The generation outputs.
    """
    outputs = super().generate(
        input_ids,
        num_beams=num_beams,
        decoder_start_token_id=decoder_start_token_id,
        decoder_end_token_id=decoder_end_token_id,
        num_return_sequences=num_return_sequences,
        min_gen_seq_length=min_gen_seq_length,
        max_gen_seq_length=max_gen_seq_length,
        repetition_penalty=repetition_penalty,
        no_repeat_ngram_size=no_repeat_ngram_size,
        early_stopping=early_stopping,
        length_penalty=length_penalty,
        num_beam_groups=num_beam_groups,
        diversity_penalty=diversity_penalty,
        do_sample=do_sample,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
    )

    return GenerationOutputs(
        sequences=outputs.sequences,
        sequences_scores=outputs.sequences_scores,
    )