unitorch.cli.models.pegasus¤
PegasusProcessor¤
Tip
core/process/pegasus
is the section for configuration of PegasusProcessor.
Bases: PegasusProcessor
Processor for the Pegasus model.
Initialize the PegasusProcessor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab_path |
str
|
The path to the vocabulary file. |
required |
special_input_ids |
Dict
|
Dictionary of special input IDs. Defaults to an empty dictionary. |
dict()
|
max_seq_length |
int
|
The maximum sequence length. Defaults to 128. |
128
|
max_gen_seq_length |
int
|
The maximum generated sequence length. Defaults to 48. |
48
|
Source code in src/unitorch/cli/models/pegasus/processing.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
from_core_configure
classmethod
¤
from_core_configure(config, **kwargs)
Create an instance of PegasusProcessor from a core configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
The core configuration. |
required | |
**kwargs |
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
PegasusProcessor |
The initialized PegasusProcessor instance. |
Source code in src/unitorch/cli/models/pegasus/processing.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
PegasusForGeneration¤
Tip
core/model/generation/pegasus
is the section for configuration of PegasusForGeneration.
Bases: PegasusForGeneration
Pegasus model for generation tasks.
Initialize the PegasusForGeneration model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
The path to the model configuration file. |
required |
gradient_checkpointing |
bool
|
Whether to use gradient checkpointing during training. Defaults to False. |
False
|
Source code in src/unitorch/cli/models/pegasus/modeling.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
forward ¤
forward(
input_ids: Tensor,
attention_mask: Tensor,
decoder_input_ids: Tensor,
decoder_attention_mask: Tensor,
)
Perform a forward pass through the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
Input token IDs. |
required |
attention_mask |
Tensor
|
Attention mask. |
required |
decoder_input_ids |
Tensor
|
Decoder input token IDs. |
required |
decoder_attention_mask |
Tensor
|
Decoder attention mask. |
required |
Returns:
Name | Type | Description |
---|---|---|
GenerationOutputs |
The generation outputs. |
Source code in src/unitorch/cli/models/pegasus/modeling.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
from_core_configure
classmethod
¤
from_core_configure(config, **kwargs)
Create an instance of PegasusForGeneration from a core configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config |
The core configuration. |
required | |
**kwargs |
Additional keyword arguments. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
PegasusForGeneration |
The initialized PegasusForGeneration instance. |
Source code in src/unitorch/cli/models/pegasus/modeling.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|
generate ¤
generate(
input_ids: Tensor,
num_beams: Optional[int] = 5,
decoder_start_token_id: Optional[int] = 0,
decoder_end_token_id: Optional[
Union[int, List[int]]
] = 1,
num_return_sequences: Optional[int] = 1,
min_gen_seq_length: Optional[int] = 0,
max_gen_seq_length: Optional[int] = 48,
repetition_penalty: Optional[float] = 1.0,
no_repeat_ngram_size: Optional[int] = 0,
early_stopping: Optional[bool] = True,
length_penalty: Optional[float] = 1.0,
num_beam_groups: Optional[int] = 1,
diversity_penalty: Optional[float] = 0.0,
do_sample: Optional[bool] = False,
temperature: Optional[float] = 1.0,
top_k: Optional[int] = 50,
top_p: Optional[float] = 1.0,
)
Generate sequences using the Pegasus model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
Input token IDs. |
required |
num_beams |
int
|
Number of beams for beam search. Defaults to 5. |
5
|
decoder_start_token_id |
int
|
Decoder start token ID. Defaults to 0. |
0
|
decoder_end_token_id |
int or List[int]
|
The ID(s) of the decoder end token(s). Defaults to 1. |
1
|
num_return_sequences |
int
|
Number of generated sequences to return. Defaults to 1. |
1
|
min_gen_seq_length |
int
|
Minimum generation sequence length. Defaults to 0. |
0
|
max_gen_seq_length |
int
|
Maximum generation sequence length. Defaults to 48. |
48
|
repetition_penalty |
float
|
Repetition penalty. Defaults to 1.0. |
1.0
|
no_repeat_ngram_size |
int
|
Size of n-grams to prevent repetition. Defaults to 0. |
0
|
early_stopping |
bool
|
Whether to perform early stopping. Defaults to True. |
True
|
length_penalty |
float
|
Length penalty. Defaults to 1.0. |
1.0
|
num_beam_groups |
int
|
Number of beam groups for diverse beam search. Defaults to 1. |
1
|
diversity_penalty |
float
|
Diversity penalty for diverse beam search. Defaults to 0.0. |
0.0
|
do_sample |
bool
|
Whether to use sampling for generation. Defaults to False. |
False
|
temperature |
float
|
Sampling temperature. Defaults to 1.0. |
1.0
|
top_k |
int
|
Top-k sampling parameter. Defaults to 50. |
50
|
top_p |
float
|
Top-p sampling parameter. Defaults to 1.0. |
1.0
|
Returns:
Name | Type | Description |
---|---|---|
GenerationOutputs |
The generation outputs. |
Source code in src/unitorch/cli/models/pegasus/modeling.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
|