Skip to content

unitorch.cli.models¤

Classification¤

Tip

core/postprocess/classification/binary_score in configuration file to use the postprocess function.

Postprocess the classification outputs for binary classification with scores.

Parameters:

Name Type Description Default
outputs ClassificationOutputs

Outputs from the classification model.

required

Returns:

Name Type Description
WriterOutputs

Processed outputs with scores.

Source code in src/unitorch/cli/models/classification_utils.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
@register_process("core/postprocess/classification/binary_score")
def _binary_score(
    self,
    outputs: ClassificationOutputs,
):
    """
    Postprocess the classification outputs for binary classification with scores.

    Args:
        outputs (ClassificationOutputs): Outputs from the classification model.

    Returns:
        WriterOutputs: Processed outputs with scores.
    """
    assert outputs.outputs.dim() == 2

    results = outputs.to_pandas()
    assert results.shape[0] == 0 or results.shape[0] == outputs.outputs.shape[0]

    outputs = outputs.outputs.numpy()
    if self.act_fn is not None:
        outputs = self.act_fn(outputs)

    if outputs.ndim == 2:
        pscore = outputs[:, 1] if outputs.shape[-1] > 1 else outputs[:, 0]
        results["pscore"] = pscore.tolist()
    else:
        results["pscore"] = outputs.tolist()
    return WriterOutputs(results)

Tip

core/postprocess/classification/score in configuration file to use the postprocess function.

Postprocess the classification outputs for multi-classes classification with scores.

Parameters:

Name Type Description Default
outputs ClassificationOutputs

Outputs from the classification model.

required

Returns:

Name Type Description
WriterOutputs

Processed outputs with scores and predicted classes.

Source code in src/unitorch/cli/models/classification_utils.py
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
@register_process("core/postprocess/classification/score")
def _classifier_score(
    self,
    outputs: ClassificationOutputs,
):
    """
    Postprocess the classification outputs for multi-classes classification with scores.

    Args:
        outputs (ClassificationOutputs): Outputs from the classification model.

    Returns:
        WriterOutputs: Processed outputs with scores and predicted classes.
    """
    assert outputs.outputs.dim() == 2

    results = outputs.to_pandas()
    assert results.shape[0] == 0 or results.shape[0] == outputs.outputs.shape[0]
    outputs = outputs.outputs.numpy()
    if self.act_fn is not None:
        outputs = self.act_fn(outputs)

    results["pscore"] = outputs.max(-1)
    results["pclass"] = outputs.argmax(-1)
    if self.return_scores:
        results["scores"] = outputs.tolist()
    return WriterOutputs(results)

Tip

core/postprocess/classification/embedding in configuration file to use the postprocess function.

Postprocess the embedding outputs.

Parameters:

Name Type Description Default
outputs EmbeddingOutputs

Outputs from the embedding model.

required

Returns:

Name Type Description
WriterOutputs

Processed outputs with embeddings.

Source code in src/unitorch/cli/models/classification_utils.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
@register_process("core/postprocess/classification/embedding")
def _embedding(
    self,
    outputs: EmbeddingOutputs,
):
    """
    Postprocess the embedding outputs.

    Args:
        outputs (EmbeddingOutputs): Outputs from the embedding model.

    Returns:
        WriterOutputs: Processed outputs with embeddings.
    """
    results = outputs.to_pandas()
    assert results.shape[0] == 0 or results.shape[0] == outputs.embedding.shape[0]

    embedding = outputs.embedding.numpy()
    if embedding.ndim > 2:
        embedding = embedding.reshape(embedding.size(0), -1)
    results["embedding"] = embedding.tolist()

    embedding1 = outputs.embedding1.numpy()
    if embedding1.size > 0:
        if embedding1.ndim > 2:
            embedding1 = embedding1.reshape(embedding1.size(0), -1)
        results["embedding1"] = embedding1.tolist()

    embedding2 = outputs.embedding2.numpy()
    if embedding2.size > 0:
        if embedding2.ndim > 2:
            embedding2 = embedding2.reshape(embedding2.size(0), -1)
        results["embedding2"] = embedding2.tolist()

    embedding3 = outputs.embedding3.numpy()
    if embedding3.size > 0:
        if embedding3.ndim > 2:
            embedding3 = embedding3.reshape(embedding3.size(0), -1)
        results["embedding3"] = embedding3.tolist()

    embedding4 = outputs.embedding4.numpy()
    if embedding4.size > 0:
        if embedding4.ndim > 2:
            embedding4 = embedding4.reshape(embedding4.size(0), -1)
        results["embedding4"] = embedding4.tolist()

    return WriterOutputs(results)

Tip

core/postprocess/classification/embedding/string in configuration file to use the postprocess function.

Postprocess the embedding outputs as string representations.

Parameters:

Name Type Description Default
outputs EmbeddingOutputs

Outputs from the embedding model.

required

Returns:

Name Type Description
WriterOutputs

Processed outputs with string representations of embeddings.

Source code in src/unitorch/cli/models/classification_utils.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
@register_process("core/postprocess/classification/embedding/string")
def _embedding_string(
    self,
    outputs: EmbeddingOutputs,
):
    """
    Postprocess the embedding outputs as string representations.

    Args:
        outputs (EmbeddingOutputs): Outputs from the embedding model.

    Returns:
        WriterOutputs: Processed outputs with string representations of embeddings.
    """
    results = outputs.to_pandas()
    assert results.shape[0] == 0 or results.shape[0] == outputs.embedding.shape[0]

    embedding = outputs.embedding.numpy()
    if embedding.ndim > 2:
        embedding = embedding.reshape(embedding.size(0), -1)
    results["embedding"] = embedding.tolist()
    results["embedding"] = results["embedding"].map(
        lambda x: " ".join([str(i) for i in x])
    )

    embedding1 = outputs.embedding1.numpy()
    if embedding1.size > 0:
        if embedding1.ndim > 2:
            embedding1 = embedding1.reshape(embedding1.size(0), -1)
        results["embedding1"] = embedding1.tolist()
        results["embedding1"] = results["embedding1"].map(
            lambda x: " ".join([str(i) for i in x])
        )

    embedding2 = outputs.embedding2.numpy()
    if embedding2.size > 0:
        if embedding2.ndim > 2:
            embedding2 = embedding2.reshape(embedding2.size(0), -1)
        results["embedding2"] = embedding2.tolist()
        results["embedding2"] = results["embedding2"].map(
            lambda x: " ".join([str(i) for i in x])
        )

    embedding3 = outputs.embedding3.numpy()
    if embedding3.size > 0:
        if embedding3.ndim > 2:
            embedding3 = embedding3.reshape(embedding3.size(0), -1)
        results["embedding3"] = embedding3.tolist()
        results["embedding3"] = results["embedding3"].map(
            lambda x: " ".join([str(i) for i in x])
        )

    embedding4 = outputs.embedding4.numpy()
    if embedding4.size > 0:
        if embedding4.ndim > 2:
            embedding4 = embedding4.reshape(embedding4.size(0), -1)
        results["embedding4"] = embedding4.tolist()
        results["embedding4"] = results["embedding4"].map(
            lambda x: " ".join([str(i) for i in x])
        )

    return WriterOutputs(results)