unitorch.models.blip¤
BlipProcessor¤
Bases: HfTextClassificationProcessor
, HfTextGenerationProcessor
, HfImageClassificationProcessor
Initializes the BlipProcessor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab_path |
str
|
The path to the vocabulary file. |
required |
vision_config_path |
str
|
The path to the vision configuration file. |
required |
max_seq_length |
Optional[int]
|
The maximum sequence length for text inputs. Defaults to 128. |
128
|
max_gen_seq_length |
Optional[int]
|
The maximum sequence length for generated outputs. Defaults to 48. |
48
|
position_start_id |
Optional[int]
|
The position start ID. Defaults to 0. |
0
|
Source code in src/unitorch/models/blip/processing.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
classification ¤
classification(
text: str,
image: Union[Image, str],
max_seq_length: Optional[int] = None,
) -> GenericOutputs
Performs classification using both text and image inputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text to classify. |
required |
image |
Image
|
The input image to classify. |
required |
max_seq_length |
Optional[int]
|
The maximum sequence length for the text. If None, the default value from initialization is used. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The outputs of the classification. |
Source code in src/unitorch/models/blip/processing.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
generation ¤
generation(
text: str,
image: Union[Image, str],
max_gen_seq_length: Optional[int] = None,
) -> GenericOutputs
Generate inputs, labels, and tokens for image to text generation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text. |
required |
image |
Image
|
The input image to caption. |
required |
max_gen_seq_length |
int
|
Maximum generated sequence length. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The generated input tokens, attention masks, label tokens, and attention masks. |
Source code in src/unitorch/models/blip/processing.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
generation_inputs ¤
generation_inputs(
text: str, max_seq_length: Optional[int] = None
) -> GenericOutputs
Generate inputs for text generation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text. |
required |
max_seq_length |
int
|
Maximum sequence length. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The generated input tokens and attention mask. |
Source code in src/unitorch/models/blip/processing.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
generation_labels ¤
generation_labels(
text: str, max_gen_seq_length: Optional[int] = None
) -> GenericOutputs
Generates labels for text generation based on the given input text.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text for generating labels. |
required |
max_gen_seq_length |
Optional[int]
|
The maximum sequence length for the generated labels. If None, the default value from initialization is used. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The generated labels. |
Source code in src/unitorch/models/blip/processing.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
image_classification ¤
image_classification(
image: Union[Image, str]
) -> GenericOutputs
Performs image classification on the given input image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image |
Image
|
The input image to classify. |
required |
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The outputs of the image classification. |
Source code in src/unitorch/models/blip/processing.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|
text_classification ¤
text_classification(
text: str, max_seq_length: Optional[int] = None
) -> GenericOutputs
Performs text classification on the given input text.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text to classify. |
required |
max_seq_length |
Optional[int]
|
The maximum sequence length for the text. If None, the default value from initialization is used. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The outputs of the text classification. |
Source code in src/unitorch/models/blip/processing.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
BlipForPretrain¤
Bases: GenericModel
Initializes the BlipForPretrain model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
Path to the configuration file. |
required |
projection_dim |
Optional[int]
|
Dimension of the projection. Defaults to 512. |
512
|
freeze_base_model |
Optional[bool]
|
Whether to freeze the base model. Defaults to True. |
True
|
gradient_checkpointing |
Optional[bool]
|
Whether to use gradient checkpointing. Defaults to False. |
False
|
use_all_gather |
Optional[bool]
|
Whether to use all_gather operation for distributed training. Defaults to True. |
True
|
Source code in src/unitorch/models/blip/modeling.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
forward ¤
forward(
input_ids: Tensor,
pixel_values: Tensor,
attention_mask: Tensor,
position_ids: Tensor,
)
Forward pass of the BlipForPretrain model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
Input token IDs. |
required |
pixel_values |
Tensor
|
Pixel values of the images. |
required |
attention_mask |
Tensor
|
Attention mask for the input. |
required |
position_ids |
Tensor
|
Position IDs for the input. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Output loss for the pretraining task. |
Source code in src/unitorch/models/blip/modeling.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
BlipForClassification¤
Bases: Module
Initializes the BlipForClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
Path to the configuration file. |
required |
projection_dim |
Optional[int]
|
Dimension of the projection. Defaults to 512. |
512
|
num_classes |
Optional[int]
|
Number of classes for classification. Defaults to 1. |
1
|
freeze_base_model |
Optional[bool]
|
Whether to freeze the base model. Defaults to True. |
True
|
gradient_checkpointing |
Optional[bool]
|
Whether to use gradient checkpointing. Defaults to False. |
False
|
Source code in src/unitorch/models/blip/modeling.py
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
forward ¤
forward(
input_ids: Tensor,
pixel_values: Tensor,
attention_mask: Tensor,
position_ids: Tensor,
)
Forward pass of the BlipForClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
Input token IDs. |
required |
pixel_values |
Tensor
|
Pixel values of the images. |
required |
attention_mask |
Tensor
|
Attention mask for the input. |
required |
position_ids |
Tensor
|
Position IDs for the input. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Output logits for classification. |
Source code in src/unitorch/models/blip/modeling.py
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
BlipForTextClassification¤
Bases: GenericModel
Initializes the BlipForTextClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
Path to the configuration file. |
required |
projection_dim |
Optional[int]
|
Dimension of the projection. Defaults to 512. |
512
|
num_classes |
Optional[int]
|
Number of classes for classification. Defaults to 1. |
1
|
freeze_base_model |
Optional[bool]
|
Whether to freeze the base model. Defaults to True. |
True
|
gradient_checkpointing |
Optional[bool]
|
Whether to use gradient checkpointing. Defaults to False. |
False
|
Source code in src/unitorch/models/blip/modeling.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
forward ¤
forward(
input_ids: Tensor,
attention_mask: Tensor,
position_ids: Tensor,
)
Forward pass of the BlipForTextClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
Input token IDs. |
required |
attention_mask |
Tensor
|
Attention mask for the input. |
required |
position_ids |
Tensor
|
Position IDs for the input. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Output logits for classification. |
Source code in src/unitorch/models/blip/modeling.py
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
BlipForImageClassification¤
Bases: GenericModel
Initializes the BlipForImageClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
Path to the configuration file. |
required |
projection_dim |
Optional[int]
|
Dimension of the projection. Defaults to 512. |
512
|
num_classes |
Optional[int]
|
Number of classes for classification. Defaults to 1. |
1
|
freeze_base_model |
Optional[bool]
|
Whether to freeze the base model. Defaults to True. |
True
|
gradient_checkpointing |
Optional[bool]
|
Whether to use gradient checkpointing. Defaults to False. |
False
|
Source code in src/unitorch/models/blip/modeling.py
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
|
forward ¤
forward(pixel_values: Tensor)
Forward pass of the BlipForImageClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pixel_values |
Tensor
|
Input pixel values. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Output logits for classification. |
Source code in src/unitorch/models/blip/modeling.py
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
|
BlipForImageCaption¤
Bases: GenericModel
Initializes the BlipForImageCaption model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
Path to the configuration file. |
required |
gradient_checkpointing |
Optional[bool]
|
Whether to use gradient checkpointing. Defaults to False. |
False
|
Source code in src/unitorch/models/blip/modeling.py
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
|
forward ¤
forward(
pixel_values: Tensor,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
)
Forward pass of the BlipForImageCaption model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pixel_values |
Tensor
|
Input pixel values. |
required |
input_ids |
torch.Tensor optional
|
Input token IDs. Defaults to None. |
None
|
attention_mask |
torch.Tensor optional
|
Attention mask. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Logits for caption generation. |
Source code in src/unitorch/models/blip/modeling.py
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
|
generate ¤
generate(
pixel_values: Tensor,
input_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
num_beams: Optional[int] = 5,
decoder_start_token_id: Optional[int] = 101,
decoder_end_token_id: Optional[
Union[int, List[int]]
] = 102,
num_return_sequences: Optional[int] = 1,
min_gen_seq_length: Optional[int] = 0,
max_gen_seq_length: Optional[int] = 48,
repetition_penalty: Optional[float] = 1.0,
no_repeat_ngram_size: Optional[int] = 0,
early_stopping: Optional[bool] = True,
length_penalty: Optional[float] = 1.0,
num_beam_groups: Optional[int] = 1,
diversity_penalty: Optional[float] = 0.0,
do_sample: Optional[bool] = False,
temperature: Optional[float] = 1.0,
top_k: Optional[int] = 50,
top_p: Optional[float] = 1.0,
)
Generates captions for the given input images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pixel_values |
Tensor
|
Input pixel values. |
required |
input_ids |
torch.Tensor optional
|
Input token IDs. Defaults to None. |
None
|
attention_mask |
torch.Tensor optional
|
Attention mask. Defaults to None. |
None
|
num_beams |
Optional[int]
|
Number of beams for beam search. Defaults to 5. |
5
|
decoder_start_token_id |
Optional[int]
|
ID of the start token for decoding. Defaults to 30522. |
101
|
decoder_end_token_id |
int or List[int]
|
ID of the end token for decoding. Defaults to 2. |
102
|
num_return_sequences |
Optional[int]
|
Number of caption sequences to return. Defaults to 1. |
1
|
min_gen_seq_length |
Optional[int]
|
Minimum length of generated sequences. Defaults to 0. |
0
|
max_gen_seq_length |
Optional[int]
|
Maximum length of generated sequences. Defaults to 48. |
48
|
repetition_penalty |
Optional[float]
|
Repetition penalty value. Defaults to 1.0. |
1.0
|
no_repeat_ngram_size |
Optional[int]
|
Size of n-grams to avoid repetition. Defaults to 0. |
0
|
early_stopping |
Optional[bool]
|
Whether to stop generation early. Defaults to True. |
True
|
length_penalty |
Optional[float]
|
Length penalty value. Defaults to 1.0. |
1.0
|
num_beam_groups |
Optional[int]
|
Number of groups for diverse beam search. Defaults to 1. |
1
|
diversity_penalty |
Optional[float]
|
Diversity penalty value. Defaults to 0.0. |
0.0
|
do_sample |
Optional[bool]
|
Whether to use sampling for generation. Defaults to False. |
False
|
temperature |
Optional[float]
|
Temperature value for sampling. Defaults to 1.0. |
1.0
|
top_k |
Optional[int]
|
Value of k for top-k sampling. Defaults to 50. |
50
|
top_p |
Optional[float]
|
Value of p for top-p sampling. Defaults to 1.0. |
1.0
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
Generated caption sequences and their scores. |
Source code in src/unitorch/models/blip/modeling.py
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
|