unitorch.models.bloom¤
BloomProcessor¤
Bases: HfTextClassificationProcessor
, HfTextGenerationProcessor
Processor for the Bloom model that combines text classification and text generation functionality.
Initializes a new instance of the BloomProcessor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tokenizer_file |
str
|
The path to the tokenizer file. |
required |
max_seq_length |
Optional[int]
|
The maximum sequence length for classification. Defaults to 128. |
128
|
max_gen_seq_length |
Optional[int]
|
The maximum sequence length for generation. Defaults to 48. |
48
|
Source code in src/unitorch/models/bloom/processing.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
classification ¤
classification(
text: str,
text_pair: Optional[str] = None,
max_seq_length: Optional[int] = None,
) -> GenericOutputs
Preprocesses text for classification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text to classify. |
required |
text_pair |
Optional[str]
|
The second input text for sequence classification. Defaults to None. |
None
|
max_seq_length |
Optional[int]
|
The maximum sequence length. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The processed input IDs and attention mask tensors. |
Source code in src/unitorch/models/bloom/processing.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
generation ¤
generation(
text: str,
text_pair: str,
max_seq_length: Optional[int] = None,
max_gen_seq_length: Optional[int] = None,
) -> GenericOutputs
Preprocesses text for generation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text for generation. |
required |
text_pair |
str
|
The second input text for generation. |
required |
max_seq_length |
Optional[int]
|
The maximum sequence length for classification. Defaults to None. |
None
|
max_gen_seq_length |
Optional[int]
|
The maximum generation sequence length. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The processed input IDs and attention mask tensors. |
Source code in src/unitorch/models/bloom/processing.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
generation_inputs ¤
generation_inputs(
text: str, max_seq_length: Optional[int] = None
) -> GenericOutputs
Preprocesses text as generation inputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text for generation. |
required |
max_seq_length |
Optional[int]
|
The maximum sequence length. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The processed input IDs tensor. |
Source code in src/unitorch/models/bloom/processing.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
generation_labels ¤
generation_labels(
text: str, max_gen_seq_length: Optional[int] = None
) -> GenericOutputs
Preprocesses text as generation labels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text for generation labels. |
required |
max_gen_seq_length |
Optional[int]
|
The maximum generation sequence length. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The processed input IDs and attention mask tensors. |
Source code in src/unitorch/models/bloom/processing.py
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
|
instruction_generation_inputs ¤
instruction_generation_inputs(
instruction: str,
input: str,
max_seq_length: Optional[int] = None,
) -> GenericOutputs
Preprocesses text as generation inputs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str
|
The input text for generation. |
required |
max_seq_length |
Optional[int]
|
The maximum sequence length. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The processed input IDs tensor. |
Source code in src/unitorch/models/bloom/processing.py
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|
BloomForClassification¤
Bases: GenericModel
, PeftWeightLoaderMixin
A classification model based on the Bloom architecture.
Initializes a new instance of the BloomForClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
The path to the configuration file for the Bloom model. |
required |
num_classes |
Optional[int]
|
The number of output classes for classification. Defaults to 1. |
1
|
hidden_dropout_prob |
Optional[float]
|
The dropout probability for the hidden layers. Defaults to 0.1. |
0.1
|
gradient_checkpointing |
Optional[bool]
|
Whether to use gradient checkpointing. Defaults to False. |
False
|
Source code in src/unitorch/models/bloom/modeling.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
|
forward ¤
forward(
input_ids: Tensor,
attention_mask: Optional[Tensor] = None,
) -> Tensor
Forward pass of the BloomForClassification model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
The input token IDs. |
required |
attention_mask |
Optional[Tensor]
|
The attention mask tensor. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The output logits for classification. |
Source code in src/unitorch/models/bloom/modeling.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
|
BloomForGeneration¤
Bases: GenericModel
, PeftWeightLoaderMixin
A generation model based on the Bloom architecture.
Initializes a new instance of the BloomForGeneration model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_path |
str
|
The path to the configuration file for the Bloom model. |
required |
gradient_checkpointing |
Optional[bool]
|
Whether to use gradient checkpointing. Defaults to False. |
False
|
Source code in src/unitorch/models/bloom/modeling.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|
forward ¤
forward(
input_ids: Tensor,
attention_mask: Optional[Tensor] = None,
) -> Tensor
Forward pass of the BloomForGeneration model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
The input token IDs. |
required |
attention_mask |
Optional[Tensor]
|
The attention mask tensor. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The output logits. |
Source code in src/unitorch/models/bloom/modeling.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
generate ¤
generate(
input_ids: Tensor,
num_beams: Optional[int] = 5,
decoder_start_token_id: Optional[int] = 1,
decoder_end_token_id: Optional[
Union[int, List[int]]
] = 2,
num_return_sequences: Optional[int] = 1,
min_gen_seq_length: Optional[int] = 0,
max_gen_seq_length: Optional[int] = 48,
repetition_penalty: Optional[float] = 1.0,
no_repeat_ngram_size: Optional[int] = 0,
early_stopping: Optional[bool] = True,
length_penalty: Optional[float] = 1.0,
num_beam_groups: Optional[int] = 1,
diversity_penalty: Optional[float] = 0.0,
do_sample: Optional[bool] = False,
temperature: Optional[float] = 1.0,
top_k: Optional[int] = 50,
top_p: Optional[float] = 1.0,
) -> GenericOutputs
Generate sequences using the BloomForGeneration model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_ids |
Tensor
|
The input token IDs. |
required |
num_beams |
Optional[int]
|
The number of beams for beam search. Defaults to 5. |
5
|
decoder_start_token_id |
Optional[int]
|
The ID of the start token for decoding. Defaults to 1. |
1
|
decoder_end_token_id |
Optional[int]
|
The ID of the end token for decoding. Defaults to 2. |
2
|
num_return_sequences |
Optional[int]
|
The number of generated sequences to return. Defaults to 1. |
1
|
min_gen_seq_length |
Optional[int]
|
The minimum length of the generated sequences. Defaults to 0. |
0
|
max_gen_seq_length |
Optional[int]
|
The maximum length of the generated sequences. Defaults to 48. |
48
|
repetition_penalty |
Optional[float]
|
The penalty for repeated n-grams. Defaults to 1.0. |
1.0
|
no_repeat_ngram_size |
Optional[int]
|
The size of n-grams to prevent repetition. Defaults to 0. |
0
|
early_stopping |
Optional[bool]
|
Whether to stop generation early based on specified conditions. Defaults to True. |
True
|
length_penalty |
Optional[float]
|
The penalty for longer sequences. Defaults to 1.0. |
1.0
|
num_beam_groups |
Optional[int]
|
The number of beam groups for diverse beam search. Defaults to 1. |
1
|
diversity_penalty |
Optional[float]
|
The penalty for diverse beam search. Defaults to 0.0. |
0.0
|
do_sample |
Optional[bool]
|
Whether to use sampling for generation. Defaults to False. |
False
|
temperature |
Optional[float]
|
The temperature for sampling. Defaults to 1.0. |
1.0
|
top_k |
Optional[int]
|
The number of top-k tokens to consider for sampling. Defaults to 50. |
50
|
top_p |
Optional[float]
|
The cumulative probability for top-p sampling. Defaults to 1.0. |
1.0
|
Returns:
Name | Type | Description |
---|---|---|
GenericOutputs |
GenericOutputs
|
The generated sequences and their scores. |
Source code in src/unitorch/models/bloom/modeling.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
|